글 찾기( 아래 목록 크릭 또는 왼쪽 분류목록 클릭)

외통궤적 외통인생 외통넋두리 외통프리즘 외통묵상 외통나들이 외통논어
외통인생론노트 외통역인생론 시두례 글두레 고사성어 탈무드 질병과 건강
생로병사비밀 회화그림 사진그래픽 조각조형 음악소리 자연경관 자연현상
영상종합 마술요술 연예체육 사적跡蹟迹 일반자료 생활 컴퓨터

색과 빛의 조화.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

비공개 영리 목적 편집에 관한 약관 개정에 대한 의견을 내어 주시기 바랍니다. 

빛 위키 백과, 우리 모두의 백과사전.

이동: 둘러보기, 검색 

빛(光)이란 좁은 의미에서 가시광선, 즉 일반적으로 사람이 볼 수 있는, 약 400 nm에서 700 nm 사이의 파장을 가진 전자기파를 뜻한다. 넓은 의미에서는 모든 종류의 전자기파를 지칭한다. 물리학에서는 주로 넓은 의미로 쓰인다.

 

물리학에서 보는 빛

고전 물리학에서 보는 빛은 전자기파이며, 매질 없이 전파한다. 전기 또는 자기를 띠는 물질이 가속 운동하면 전자기파가 전파한다. 그러나 빛은 회절과 간섭의 파동성을 띤다.


양자 물리학에서 보는 빛은 파동뿐 아니라 입자로서 이중성을 갖는다. 아인슈타인의 광양자 가설에 따라 빛은 일정한 에너지를 갖도록 양자로 되어(개수를 셀 수 있는 단위로 되어) 있다.


빛의 속도

이 주제의 자세한 내용은 빛의 속도 문서를 보십시오.

빛이 지구에서 달까지 도달하는 데 걸리는 시간을 나타내는 애니메이션. 약 1.2초가 걸린다빛의 속도를 측정하려 한 사람 중에 17세기 갈릴레오 갈릴레이가 있다. 갈릴레이는 약 1 km 떨어진 곳에서 서로 등불을 가지고, 상대방의 등불이 보이면 바로 등불을 열게 하는 방법으로, 그 시간차를 통해 광속을 측정하려고 했다. 그러나 이 실험에서는 빛이 왕복하는 데 걸린 시간이 10만분의 1초 정도로 매우 짧아 속도를 제대로 측정할 수 없었다.


덴마크의 천문학자인 올러 뢰머는 1676년, 목성의 위성인 이오의 관찰을 통해서 빛의 속도를 측정하였다. 뢰머는 목성이 지구에 가장 근접했을 때 예측한 것보다 11분 일찍 이오의 월식이 일어난다는 것을 알았고, 가장 멀리있을 때는 예측보다 11분 늦게 일어난다는 사실을 발견했다. 뢰머는 그 22분이 빛이 지구의 공전궤도의 지름을 지나는 시간이라고 계산하여 빛이 2.12×108 m/s라고 추정했다.


프랑스의 물리학자 이폴리트 피조는 1849년 더 정확하게 빛의 속도를 측정하였다. 피조는 빛이 톱니바퀴를 통과한 후 8.9km 떨어진 곳의 거울에 의해 반사가 되어 다시 톱니바퀴로 돌아오는데, 그 각속도를 이용해 빛의 속도를 측정하였다. 피조는 빛의 속도를 3.13×108 m/s라고 측정하였다. 1862년 레옹 푸코는 회전하는 거울을 통해 실험을 하여 2.98×108 m/s라는 결과를 얻었고, 앨버트 에이브러햄 마이컬슨은 1877년부터 그가 죽은 해인 1931년까지 빛의 속도 측정실험을 했다. 마이컬슨은 푸조의 방법을 개량해 1926년에 2.99796×108 m/s라는 결과를 얻었다.


현재 사용하고 있는 빛의 속도는 진공에서 2.997 924 58×108 m/s이다. 실제로 오늘날에는 미터 자체를 1/299 792 458초 동안 빛이 이동한 거리로 정의하고 있다. 즉, 현재의 빛의 속도는 측정값이 아니라 정의된 값이다. 이 속도는 1초에 지구를 일곱 바퀴 반을 돌 수 있고 지구에서 달까지 가는 데 1초 정도 걸리는 매우 빠른 속도이다.


빛에 대한 이론

고대 그리스의 연구[편집]빛의 본질에 대한 연구를 처음으로 한 사람은 고대 그리스의 자연철학자들이었다. 그들은 왜 물질은 보이는 것일까 라는 것을 연구하면서 간접적으로 빛의 본질에 대해 연구하였다. 기원전 540년경에 피타고라스는 물체가 그 물체와 비슷한 미립자를 방출하고, 그 입자가 눈에 부딪칠 때 시각이 얻어진다고 하였다. 반대로, 100년 후 엠페도클레스는 눈에서 방출된 것이 물체에 충돌하여 시각이 생긴다고 했다. 이런 설명은 직관적으로 빛이 입자라는 것을 보여주고 있다.


뉴턴의 입자설

아이작 뉴턴이 스펙트럼 현상을 실험할 당시 백색광이 프리즘에 의해 색이 분해되는 것은 이미 알려진 사실이었다. 이것은 어둠이 색을 변화시키거나 프리즘에 의한 굴절이 빛의 성질을 변화시키기 때문이라는 것이 그 당시의 설명이었다. 뉴턴은 프리즘에 의해서 분해된 광선 하나를 다시 프리즘에 통과 시키면 색이 더 이상 분해되지 않는 것을 실험해 보았다. 이 사실로 뉴턴은 어둠이나, 프리즘에 의한 굴절에 의해 빛의 성질이 바뀌지 않는다는 것을 알게 되었다. 그는 각각의 색에 대응되는 서로 다른 크기의 빛 입자가 존재하고, 그 입자가 각각 다른 수의 진동을 일으켜서 색을 만들어 낸다고 주장했다. 다시 말해서 가장 큰 크기의 빛 입자가 최대 진동수인 적색을 만들고, 가장 작은 크기의 빛 입자가 최소 진동수인 청색을 만들어 낸다고 했다. 1704년 뉴턴은 그의 광학 이론을 집대성한 책 《광학》을 출판하였다. 그 책에서 뉴턴은 "빛의 사선(射線)이 물질로부터 발사되는 작은 물체"라고 적었고, 그 이유는 이러한 물체는 같은 매질 속을 지날 때, 그림자 쪽으로 휘어지지 않고 직진하기 때문이라고 했다. 뉴턴의 명성 때문에 입자설은 18세기 동안 정설로 확고한 위치를 지켰다.


하위헌스의 파동설[편집]네덜란드 출신의 프랑스 과학 아카데미 회원이었던 크리스티안 하위헌스는 빛의 파동설을 주장했다. 그는 하위헌스 원리를 통해 파동이 전해지는 방법을 설명한 것으로 그 이름이 알려져 있다. 빛의 파동설은 프랑스의 르네 데카르트와 영국의 로버트 훅이 기초하고 하위헌스가 완성한 이론이다. 하위헌스는 빛이 교차할 때 서로 방해를 받지 않고 투과한다는 이유로 빛의 파동설을 주장하였다. 만약 빛이 입자라면 충돌로 인해 반드시 빛이 흐트러지는 것이기 때문이다. 1690년 그의 빛에 관한 이론인 ‘빛에 관한 논문’을 발간하였다. 그는 빛의 파동을 전하는 매질로 우주 전체에 정지한 상태로 퍼져있는 에테르라는 물질이 있다고 주장했다. 뉴턴의 입자설과 하위헌스의 파동설은 둘 중 우세하다는 증거는 발견되지 않았으나, 뉴턴의 명성에 의해 입자설이 더 많이 지지를 받았다.


영의 파동설(토마스 영의 이중슬릿 실험. )

영의 실험은 빛의 파동설을 뒷받침한다.19세기가 되어 영국의 토머스 영이 ‘빛의 간섭 실험’을 발표하면서 빛의 입자설에 대한 확실한 반론이 나왔다. ‘파동의 간섭’이란, 두 파동이 중첩되었을 때 마루들은 보강간섭을 하고 골들은 소멸 간섭을 하여 줄무늬를 만드는 현상이다. 이런 파동의 간섭현상이 빛에서도 나타난 것을 영의 이중 슬릿 실험에 의해 밝혀졌다. 이런 줄무늬를 간섭 무늬라고 한다. 1803년 런던 왕립 학회에서 처음 이 실험을 발표했을 때, 학계의 권리에 부딪혀 받아들여지지 않았다. 그러나 이후 1818년 프랑스의 오귀스탱 장 프레넬은 빛의 회절을 파동설로 설명하였고, 1850년 프랑스의 레옹 푸코가 빛의 속도를 측정함으로써 파동설이 받아들어지게 되었다.


맥스웰의 전자기 이론 (이 주제의 자세한 내용은 맥스웰 방정식 문서를 보십시오.)

정지 상태의 광파. 빛의 두 성분의 진동을 보여주고 있다. 전기장과 자기장은 서로 수직이고, 가로방향의 파동을 형성한다.1867년 영국의 제임스 클러크 맥스웰은 전기와 자기가 밀접하게 관련이 있고 이를 수식적으로 나타내었다. 그는 전기와 자기사이의 상호작용으로 파장이 발생되고 전파되는 것을 알아냈다. 실제 전자기력은 파동의 형태로 전파되며, 전자기파는 서로 직각으로 진동하는 전기장과 자기장의 두 성분을 갖는다. 맥스웰은 진공에서 전자기파의 속도를 계산해 본 결과 빛의 속도와 일치하는 것을 확인 하였다. 그는 빛이 전자기파의 한 형태라고 결론을 내었다. 맥스웰에 빛이 파동이라는 것은 수학적으로 엄밀하게 유도되었으므로 이는 빛의 파동설을 확고히 하였다.


광전 효과와 입자설의 부활 (이 주제의 자세한 내용은 광전 효과 문서를 보십시오.)

빛이 금속 표면에 충돌할 때 전자가 방출되는 현상을 광전효과라고 한다. 광전효과는 1887년 독일의 헤르츠가 우연히 발견하였다. 그 당시에는 빛이 파동인 경우 발생하는 현상으로 큰 관심을 갖지 않았다. 그러나 광전효과를 조사해 보면서 빛이 파동인 경우 설명하기 힘든 현상들이 나타났다. 방출되는 전자의 수는 빛의 세기가 아니라 빛의 진동수에 비례하는 것이 확인되었다. 게다가 어떤 특정 진동수보다 낮은 진동수를 가진 빛이 비추었을 때 빛의 세기에 관계없이 전자가 방출되지 않았다. 이 결과는 빛이 파동설로는 설명이 불가능한 것이었다. 마침내 1905년 알베르트 아인슈타인이 빛의 입자설의 부활을 통해 이 문제를 해결하였다. 아인슈타인은 빛 입자를 광자라고 불렀고 그의 주장을 광양자설이라 하였다. 그러나 압도적으로 많은 파동설의 증거 때문에 많은 물리학자들의 반론에 부딪혔다. 아인슈타인은 그의 주장을 뒷받침하는 많은 논문을 발표하는 노력을 통해, 결국 그의 광전 효과에 대한 설명이 인정받게 되었다. 이것은 결정적으로 빛의 입자와 파동의 이중성과 양자역학의 기초를 마련하게 되었다.


입자와 파동의 이중성 (이 주제의 자세한 내용은 파동 입자 이중성 문서를 보십시오.)

아인슈타인의 광전효과에 대한 연구와 플랑크의 결과를 토대로, 현재의 이론은 빛이 입자적 성질과 파동적 성질이 모두 가지고 있다고 설명한다. 아인슈타인은 광자의 에너지는 광자의 진동수에 비례한다고 했다. 즉, 입자적 성질을 가진 광자와 파동이 가지는 성질인 진동수를 동시해 표현하였다. 일반적으로, 모든 물질은 입자성과 파동성을 동시에 가지고 있다고 했다. 파동으로 생각했던 빛이 입자라는 것을 보였다. 입자라고 생각한 전자를 파동임을 보인 것은 프랑스의 루이 드 브로이 이다. 그는 1924년 물질파 이론을 제창하여 전자가 원자핵 쪽으로 가지 않고 일정한 궤도운동을 하는 것을 설명했다. 1927년에 미국의 클린턴 조지프 데이비슨이 실험적으로 전자에 파동적 성질이 있다는 것을 증명하였다.


빛의 굴절(이 주제의 자세한 내용은 굴절 문서를 보십시오.)

광선이 진공과 다른 물질 사이를 통과할 때, 또는 서로 다른 두 물질 사이를 통과할 때 빛의 파장은 변화하고 진동수는 변하지 않는다. 광선이 경계면과 수직이 아니라면 파장의 변화는 광선의 진행방향을 변화시킨다. 이런 변화를 굴절이라고 한다.


진공에서의 빛의 속력 와 물질 속에서 빛의 속력 의 비, 즉 를 굴절률이라 한다. 빛은 진공에서 보다 물질 속에서 더 느리게 진행하므로 물질 속에서 굴절률은 항상 1보다 크고, 진공에서의 굴절률은 정확히 1이다. 굴절 렌즈는 빛을 조절하여, 상(像)의 크기를 변화시키는 데 쓰인다. 돋보기, 안경, 콘택트렌즈, 현미경, 굴절 망원경 등이 굴절 렌즈를 사용한 예이다.


광원

햇빛에 비추어진 구름많은 광원들 중 가장 널리 알려진 것은 열이다. 물체의 온도에 따라 특정한 흑체 복사 스펙트럼을 방출한다. 예를 들어, 태양 주위의 6000 K의 온도인 채층에서는 가시광선에서 최댓값을 가지는 전자기 스펙트럼을 방출하고, 그보다 온도가 낮은 백열등의 경우는 방출하는 에너지의 약 10%정도가 가시광선 영역에 있고, 나머지는 적외선 영역에 있다. 흑체 복사 스펙트럼의 최댓값은 차가운 물체일수록 적외선 영역에 존재한다. 그리고 온도가 높아질수록 최댓값은 짧은 파장 영역으로 이동하여 처음에는 가시광선 영역의 빨간색을 지나 파란색으로 이동하고, 결국 가시광선을 벗어나 자외선 영역으로 이동한다. 금속을 가열할 때 빨간색을 내는 것보다 파란색을 내는 것이 더 높은 온도일 것이다. 이런 이유 때문에 흔히 볼 수 있는 가스 불은 파란색이다.


원자는 빛의 특정 에너지만을 방출하거나 흡수한다. 이 현상은 각 원자에 따라 특정한 스펙트럼의 ‘방출선’을 나타나게 한다. 다이오드에서 빛의 방출, 가스램프(네온등이나 네온사인, 또는 수은기체 등), 불꽃과 같은 것은 방출의 예이다. 예를 들어, 나트륨을 태울 때 그 불꽃은 노란색이다.


전자와 같이 자유입자가 감속할 때에도 가시광선을 만들어 낸다. 예를 들어 사이클로트론 복사, 싱크로트론 복사, 제동 복사 등이 있다. 입자가 물질 속에서 빛보다 빠르게 움직일 때 그 물질은 체렌코프 복사를 하게 된다./위키백과

'사진그래픽' 카테고리의 다른 글

아름다운 사진  (0) 2014.04.12
The Magic of Gregory Colbert  (0) 2014.03.05
이래서  (0) 2014.01.12
2013년 지구촌  (0) 2014.01.06
동판지의 아름다운 풍경  (0) 2013.12.13
Posted by 외통
,